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Abbreviations
EM	� Electron microscopy
ESCRT	� Endosomal sorting complex required for 

transport
EVs	� Extracellular vesicles
FC	� Flow cytometry
ILV	� Intraluminal vesicle
MVB	� Multivesicular body
NTA	� Nanoparticle tracking analysis
SNAREs	� Soluble N-ethylmaleimide-sensitive factor 

attachment protein receptors
WB	� Western blot

Introduction

Extracellular vesicles (EVs) were first observed 50  years 
ago in plasma by Wolf, who referred to them as “platelet 
dust” [1]. Since then, all biological fluids tested have been 
shown to contain vesicles, and also in vitro grown cell lines 
have been shown to release vesicles to different extents 
[2, 3]. These vesicles have received different names dur-
ing the years, but today are often collectively referred as 
EVs. Three main types of EVs have been described based 
on their mechanism of release and size: exosomes (less 
than 150  nm in diameter), microvesicles/shedding parti-
cles and apoptotic bodies (both considered to be larger than 
100 nm). The last two types of vesicles are released directly 
from the plasma membrane in living and dying cells, 
respectively, and will not be further discussed here. This 
review deals with the smallest of the family, the exosomes, 
which are vesicles that are released to the extracellular 
environment after fusion of late endosomes/multivesicular 
bodies (MVBs) with the plasma membrane (Fig.  1). This 
process was first visualized in rat reticulocytes in 1983 [4], 
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related to exosome release studies are discussed.
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and then in sheep reticulocytes in 1985 [5]. Rose Johnstone, 
a pioneer in the field, chose the term “exosome” in 1987 
because “the process seemed to be akin to reverse endocy-
tosis, with internal vesicular contents released in contrast to 
external molecules internalized in membrane-bound struc-
tures” [6, 7]. Further insight into this process has, however, 
mainly been acquired in recent years [8].

Initially, exosomes were proposed to represent cel-
lular waste [7], and recent data also support the idea of 
exosomes as an alternative way of eliminating waste prod-
ucts to maintain cellular homeostasis [9, 10]. In addition, 
these vesicles are suggested to play a role in intercellular 
communication and have been associated with numerous 
physiological and pathological functions [2, 11, 12]. Inter-
estingly, exosomes from cancer cells have been shown to 
promote angiogenesis, modulate the immune system and 
remodel the surrounding parenchymal tissue, all factors 
supporting tumor progression (reviewed in [13]). In par-
ticular, exosomes have been shown to participate in the 
generation of the pre-metastatic niche [14–16].

To release exosomes, several cellular steps need to be 
completed; formation of intraluminal vesicles (ILVs) in 
MVBs, transport of MVBs to the plasma membrane and 
fusion of MVBs with the plasma membrane. Several mol-
ecules have been implicated in these processes, but due 
to methodological challenges, it is not easy to distinguish 

them experimentally, and in many studies it is not clear 
at which step the investigated molecule/factor operates 
(Fig. 2). Another important question is whether all MVBs 
or only specific populations can fuse with the plasma mem-
brane. In agreement with the latter possibility, it has been 
shown that in B-lymphocytes two pools of MVBs can be 
identified based on their cholesterol content, and that only 
MVBs with high cholesterol levels are able to fuse with 
the plasma membrane and release exosomes [17]. Moreo-
ver, EGF and its receptor have been shown to reach a sub-
population of MVBs that are distinct from morphologically 
identical vacuoles labeled with BMP (bismonoacyl glyc-
erophosphate), also called LBPA (lysobisphosphatic acid) 
[18], a late endosomal marker [19]. Interestingly, several 
studies show that exosomes secreted from the apical and 
basolateral side of polarized cells differ in composition 
[20–22], thus also supporting the existence of different 
MVB populations. Furthermore, it would be interesting to 
learn more about the kinetics of exosome release, for exam-
ple how many MVBs per hour fuse with the plasma mem-
brane. Measurements of total exosomal protein levels and 
western blot (WB) analysis of specific proteins indicate that 
cells only release a small percentage of their content via 
exosomes. However, as discussed later, the extent of exo-
some release is cell-dependent, and it can be regulated by 
different cellular conditions or external factors.

Fig. 1   Study of exosome release. Exosomes are released after fusion 
of MVBs with the plasma membrane. Exosomes have a complex 
composition of protein, nucleic acids, lipids and other metabolites. 
Due to their small size (<150 nm in diameter), exosomes are best vis-
ualized by electron microscopy. Though some commonly used elec-
tron microscopy methods artificially show exosomes as cup-shaped 
structures, exosomes are round structures. Exosomes are isolated 
from cell-conditioned media by several protocols that aim to concen-

trate the exosomal signal to be analyzed and to avoid contaminating 
molecules such as proteins that are secreted by other mechanisms. 
Once isolated, exosomes can be analyzed by several methods such 
as the ones included in this figure. TRPS tunable resistive pulse sens-
ing, NTA nanoparticle tracking analysis. The figure contains parts 
reprinted from the Ph.D. degree of Santosh Phuyal, University of 
Oslo, with permission from the author
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Mass spectrometry-based proteomics and lipidomics 
analyses have been useful to characterize the proteome 
and lipidome of exosomes, respectively [23–25]. It can be 
expected that the composition of exosomes reflects to some 
extent the composition of MVBs. In fact, proteins associ-
ated with MVBs such as several endosomal sorting com-
plex required for transport (ESCRT) proteins or CD63 have 
been found in exosomes, as can been seen in databases 
that compile information about the molecular composition 
of exosomes [26, 27]. Knowledge on the composition of 
exosomes can give us clues about the machinery involved 
in their release. However, due to the complex composition 
of exosomes, it is difficult to identify these molecules. In 
addition, molecules involved in the release of exosomes do 
not necessarily need to be incorporated into them.

In this review, the process that ends with the release of 
exosomes has been divided into several steps (see above) 
for simplicity. However, it should be mentioned that in 
some cases the roles of a molecule in a specific step is not 
completely understood. In addition, a specific molecule 
can be involved in more than one step along the pathway 
that leads to the secretion of exosomes. This review also 
includes a section about methodological issues related to 
exosome release studies, since they might explain discrep-
ant findings. It is also important to mention that the term 
“exosomes” is often used to refer to the pellet obtained 
after 100,000×g ultracentrifugation. Although this pellet is 
probably enriched in exosomes, it might also contain small 
microvesicles as well as protein aggregates. In fact, it was 
recently suggested that this pellet should be referred to as 
small EVs (sEVs), since it was shown to contain different 

vesicle populations [28]. Therefore, one should be aware 
that changes in this pellet may not only reflect changes in 
exosome release.

Exosome biogenesis

Exosome biogenesis starts within the endosomal system; 
early endosomes mature into late endosomes or MVBs, and 
during this process the endosomal membrane invaginates 
to generate ILVs in the lumen of the organelles [29]. The 
ESCRT machinery is important in this process. ESCRT 
consist of four different protein complexes; ESCRT-0, -I, 
-II, -III and the associated AAA ATPase Vps4 complex 
[30]. The most thorough study of ESCRTs in exosome 
biogenesis was an interesting RNAi screen targeting 23 
ESCRT and ESCRT-associated proteins in HeLa cells [31]. 
After shRNA transfection, secreted exosomes were trapped 
on anti-CD63-beads and detected by anti-CD81 and anti-
HLA-DR (MHC II) antibodies using flow cytometry (FC). 
In this screening, seven ESCRT proteins that affected exo-
some secretion were identified. Depletion of the ESCRT-0 
proteins Hrs and TSG101, and the ESCRT-I protein 
STAM1 reduced the secretion of exosomes (Table  1; 
Fig. 2). Knockdown of the ESCRT-III and associated pro-
teins CHMP4C, VPS4B, VTA1 and ALIX increased exo-
some secretion. When the role of four proteins was verified 
in exosomes isolated by ultracentrifugation and analyzed by 
WB, it was found that Hrs, TSG101 and STAM1 depletion 
decreased exosome secretion, whereas VPS4B knockdown 
increased it [31]. Silencing of ALIX seemed to change 

Fig. 2   Molecules shown to 
affect exosome biogenesis and/
or release. The process that 
leads to secretion of exosomes 
can be divided in three steps; 
exosome biogenesis, transport 
of MVBs to the plasma mem-
brane and fusion of MVBs with 
the plasma membrane. The step 
affected, or likely to be affected, 
by each molecule is indicated 
on the figure
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Table 1   Molecules shown to be involved in exosome biogenesis and/or release

Protein/lipid/modification Cell line Secretion quantified by References

Hrs DCs, HEK293, SCC61, SCC25-H1047R 
HNSCC, HeLa

Ubiquitinated proteins, TSG101, VPS4B, 
Evi, Wnt3A (WB), NTA, CD81/HLA-DR 
(FC), MHC II, HSC70, CD63 (WB)

[31–34]

STAM1 HeLa CD81/HLA-DR (FC), MHC II, HSC70, 
CD63 (WB)

[31]

TSG101 HeLa CD81/HLA-DR (FC), MHC II, HSC70, 
CD63 (WB)

[31]

CHMP4C HeLa CD81/HLA-DR (FC) [31]
ALIX HeLa, DCs, MCF-7 CD81/HLA-DR (FC), CD63, HSP70, syn-

decan (WB), NTA
[31, 35]

VTA1 HeLa CD81/HLA-DR (FC) [31]
VPS4 HeLa CD81/HLA-DR (FC), MHC II, HSC70, 

CD63 (WB)
[31]

Syntenin MCF-7 CD63, HSP70, syndecan (WB), NTA [35]
Syndecan MCF-7 CD63, HSP70, ALIX, syntenin (WB), NTA [35]
CD9 HEK293, BMDCs β-Catenin, flotillin-1 (WB) [40]
CD82 HEK293 β-Catenin (WB) [40]
CD63 HEK293 NTA [42]
LMP1 HEK293 NTA, acetylcholinesterase activity, Alix, 

HSC70, CD63, and TSG101 (WB)
[43]

Tspan8 Adenocarcinoma cells mRNA microarray, RT-qPCR, proteomics, 
WB

[41]

Synaptotagmin-7 SCC61, SCC25-H1047R HNSCC NTA [34]
VAMP7 K562 Acetylcholinesterase activity [94]
YKT6 HEK293 and A549 TSG101, WNT3A and VPS26/35 (WB) [33, 95]
Syntaxin 1A Drosophila S2 Evi (WB) [82]
PKM2 A549, HeLa NTA [96]
SNAP-23 A549 NTA [96]
RalA and RalB 4T1 EM, ALIX, CD63, HSC70 and TSG101 

(WB)
[97]

Rab2b HeLa HLA-DR (FACS-assay) [83]
Rab5a HeLa HLA-DR (FACS-assay) [83]
Rab9a HeLa HLA-DR (FACS-assay) [83]
Rab7 MCF-7, HUVEC CD63, syntenin and syndecan (WB), miR-

143 (qPCR)
[35, 89]

Rab11 K562, Drosophila S2 Transferrin receptor, Lyn, HSC70 and Evi 
(WB)

[81, 82]

Rab27a HeLa, 4T1, TS/A, B-16-F-10, SK-Mel-28, 
SCC61, SCC25-H1047R HNSCC, Du145

HLA-DR (FACS-assay), total protein, HLA-
DR, HSC70, TSG101, CD63, ALIX and 
LAMP2 (WB), NTA, CD9 (ELISA)

[14, 34, 83, 86, 87]

Rab27b HeLa, HUVEC HLA-DR (FACS-assay), total protein, HLA-
DR, HSC70 and TSG101 (WB), miR-143 
(qPCR)

[83, 89]

Rab35 Oli-neu PLP (WB) [84, 85]
Citron kinase HeLa, 293T HSC70, CD82, Lamp-1 (WB) [91]
Cortactin SCC61 NTA, TSG101, CD63 and flotillin-1 (WB) [79]
ISGylation Jurkat T and HEK293 CD63, CD81, TSG101 and flotillin (WB), 

NTA
[77]

SIMPLE COS Fluorescence of LactC2-RFP, NTA, CD63, 
ALIX (WB)

[44]

nSMase2 Oli-neu, PC-3, HEK293, J77 PLP, EGFP-CD63 (WB), miR-16, miR-146a 
(qPCR), total protein, CD81 (WB)

[47–49]

DGKα J-HM1-2.2 CD63, Lamp-1, FasL, (WB) [55]
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the protein composition of exosomes rather than to affect 
their secretion. This could indicate that ALIX affects cargo 
loading and/or the subtypes of MVBs that are destined for 
secretion. However, the authors showed that ALIX deple-
tion in dendritic cells (DCs) decreased exosome secretion 
in half of the donors.

The ESCRT-0 protein Hrs has in addition been shown to 
play a role in exosome secretion in three other independent 
studies [32–34]. In the first study, Hrs-depleted DCs were 
shown to secrete less exosomes, measured as exosomal 
level of ubiquitinated proteins, TSG101 and VPS4B [32]. 
Later, Hrs depletion in HEK293 cells was shown to reduce 
exosomal Wnt3A and Evi secretion [33]. In agreement 
with this, Hoshino et al. showed by Nanoparticle Tracking 
Analysis (NTA) that knockdown of Hrs decreased exosome 
secretion from head and neck squamous cell carcinoma 
cells [34].

It has been shown that the sorting of syndecans, mem-
brane proteins carrying heparan sulfate chains, in syn-
tenin–ALIX exosomes is mediated by their binding to 
syntenin. Syntenin is a multivalent soluble protein that 
also binds ALIX, thus establishing a link between synde-
cans and the ESCRT machinery [35]. Interesting, this study 
revealed that in addition to sorting, the interaction between 
syntenin and ALIX also facilitates ILV formation [35]. The 
same group later showed that heparanases trim the heparan 
sulfate side chains of syndecans thus facilitating the forma-
tion of syndecan clusters that might stimulate the binding 

to syntenin [36]. Interestingly, heparanase stimulates the 
sorting of CD63 too, indicating that the sorting of these 
two molecules might be related [36]. It should be men-
tioned that the syndecan–syntenin–ALIX mechanism was 
estimated to control around 50% of the secreted vesicles in 
MCF-7 cells [37], in agreement with the idea that different 
sorting mechanisms may operate in the sorting of exosomal 
molecules.

Some studies suggest that MVB biogenesis can occur 
without ESCRTs. For example, it has been shown that 
despite simultaneously silencing of key subunits of all four 
ESCRT-complexes, ILVs are still formed in MVBs, thus 
indicating the presence of ESCRT-independent mecha-
nisms [38]. Tetraspanins, transmembrane proteins enriched 
in exosomes, are also involved in ESCRT-independent exo-
some release [39]. Expression of the tetraspanins CD9 and 
CD82 has been shown to enhance the exosomal release 
of β-catenin from HEK293 cells [40]. In the same study, 
the authors also showed that bone marrow dendritic cells 
(BMDCs) from CD9 knockout mice secrete less exosome-
associated flotillin-1. Another tetraspanin that has been 
shown to be involved in exosome biogenesis is Tspan8 
[41]. Expression of Tspan8 in rat adenocarcinoma cells did 
not affect the total amount of secreted exosomes, but rather 
changed the mRNA and protein composition of exosomes. 
Recently, the tetraspanin CD63 was shown to play a role in 
exosome biogenesis as well [42]. CRISPR/Cas9 knockout 
of CD63 resulted in reduced secretion of EVs, measured 

Table 1   (continued)

Protein/lipid/modification Cell line Secretion quantified by References

PLD2 RBL-2H3, MCF-7 Bodipy-ceramide label (FACS), syntenin, 
ALIX, CD63 (WB)

[52, 53]

ARF6 MCF-7 Syntenin, ALIX, CD63, SDC1CTF (WB) [53]
Cholesterol Oli-neu, PC-3 Flotillin-2, ALIX, EGFP-CD63, PLP-myc, 

caveolin-1, Lamp-1 (WB)
[100, 101]

Ether lipid (hexadecylglycerol) PC-3 NTA, total protein [98]
V-ATPase HeLa EM, CD63, ALIX, TSG101 (WB) [105]
Tetherin HeLa EM, CD63, ALIX, TSG101 (WB) [105]
Hypoxia MCF-7, SKBR3, MDA-MB 231 NTA, CD63 (WB) [110]
Irradiation LNCaP, 22Rv1, PBMC Vybrant DiI (fluorescent staining), B7-H3 

(WB), NTA, total protein
[107, 108]

Cisplatin A549 Total protein [109]
PIKfyve PC-3 NTA, total protein, MS-proteomics [10]
ER stress (tunicamycin) MEFs qNano [111]
Autophagy (starvation) K562 Acetylcholinesterase activity, HSC70 (WB) [113]
ATG12-ATG3 MEFs Total protein, ALIX, TSG101, GAPDH, 

HSC70 (WB)
[116]

Autophagy (ATG7) DCs GAPDH (WB) [114]
Intracellular calcium (monen-

sin, A23187, ionomycin)
K562, oligodendrocytes HSC70 (WB), acetylcholinesterase activity, 

PLP (WB)
[102, 103]

The methods that were used for exosome quantification in each study are listed
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by NTA [42]. The same authors have also shown that cells 
expressing the Epstein-Barr virus encoded latent mem-
brane protein 1 (LMP1) secreted more exosomes compared 
to cells not expressing this protein, and that the LMP1-
induced particle secretion and packaging into exosomes 
required CD63 [43].

Another protein that has been suggested to play a role 
in exosome formation is the small integral membrane pro-
tein of the lysosome/late endosome (SIMPLE, also called 
lipopolysaccharide induced TNF factor, LITAF). Increased 
secretion of exosomes was observed after transfection of 
COS cells with SIMPLE, and mutation of SIMPLE inter-
fered with proper MVB formation [44].

In addition to proteins, lipids are also essential players in 
vesicular transport [45], and both types of molecules col-
laborate closely in essential processes intrinsic to vesicu-
lar transport such as membrane deformation, fission and 
fusion [46]. Membrane curvature is strongly dependent 
on the shape of the individual membrane lipids, which 
depends on the size of the headgroup and on the length and 
saturation of the acyl chains. Several studies have shown 
the involvement of lipids in exosome formation by target-
ing specific lipid modifying enzymes. Inhibition of neutral 
sphingomyelinase 2 (nSMase2), an enzyme that generates 
ceramide from sphingomyelin, has been shown to reduce 
exosomal release of proteolipid protein (PLP) from Oli-
neu cells [47]. The same study also showed that inhibition 
of nSMase2 reduced the release of exosomal EGFP-CD63 
from EGFP-CD63-transfected PC-3 cells. The mechanism 
of this effect is not clear, but it may be due to the forma-
tion of ceramide microdomains that coalescence into larger 
domains that promote membrane budding [47]. It should be 
mentioned that the role of ceramide in exosome release is 
not a general one, because it has been reproduced in sev-
eral [48, 49], but not all [50, 51] cell lines where it has 
been tested. In PC-3 cells, for example, exosomal release 
was neither affected by nSMase2 inhibition nor inhibition 
of de novo synthesis of ceramide [50]. Other lipid modify-
ing enzyme that has been studied in the context of exosome 
generation is phospholipase D2 (PLD2), an enzyme that 
produces phosphatidic acid (PA) from phospholipids. The 
activity of this enzyme was first associated with the release 
of exosomes in RBL-2H3 cells [52]. A few years later, 
PLD2 was shown to act as an effector of the small GTPase 
ADP ribosylation factor 6 (ARF6), which was identified as 
a regulator of ILV formation and exosome biogenesis [53]. 
PA, which similarly to ceramide has a small headgroup, 
may favor membrane invagination by inducing a negative 
membrane curvature [54], but the direct involvement of 
PA in the effect PLD2 on exosome biogenesis has not been 
demonstrated. Finally, diacylglycerol kinase α (DGKα), 
an enzyme that adds a phosphate group to the lipid sec-
ond messenger DAG and generates PA, has been shown to 

regulate the release of exosomes from T lymphocytes [55]. 
The activity of this kinase seems to play a negative role in 
the formation of mature MVBs, but also to affect the polar-
ized traffic of MVBs [56]. Moreover, it has recently been 
shown that the effect of DGKα in the maturation of MVBs 
and exosome secretion is mediated by protein kinase D1/2 
[57].

The biogenesis of exosomes has often been described as 
an ESCRT-dependent or ESCRT-independent mechanism 
[2], but the pathways might not be entirely separated [58]. 
The pathways might work synergistically, and different sub-
populations of exosomes could depend on different machin-
eries. Moreover, the cell type and/or cellular homeostasis 
could be an important factor in the machinery that controls 
the secretion of exosomes.

Sorting of cargo into exosomes

Exosomes contain different proteins, lipids and nucleic 
acids. Their composition is to some extent cell type 
dependent and can also be influenced by different cellu-
lar conditions or treatments. Moreover, exosomes released 
by a cell line are probably quite heterogeneous [28]. Sev-
eral studies have described the protein, lipid and RNA 
cargo of exosomes, but less is known about whether and 
how the cargo is sorted into the vesicles. Certain miRNAs 
are enriched in exosomes relative to cells, indicating that 
miRNAs can be sorted into exosomes [49, 59–61]. Interest-
ingly, a sequence motif that controls the loading of miR-
NAs through binding to the protein heterogeneous nuclear 
ribonucleoprotein A2B1 (hnRNPA2B1) has been identified 
[62]. Exosomal hnRNPA2B1 is sumoylated, and this modi-
fication seems to be essential for its miRNA binding [62]. 
Moreover, KRAS has been shown to play a role in miRNA 
sorting into exosomes. Exosomes from mutant KRAS colo-
rectal cancer cells show a distinct miRNA profile com-
pared to wild type cells [63]. Furthermore, inhibition of 
nSMase caused cellular accumulation of certain miRNAs 
in KRAS mutant, but not wild type cells. Another study 
has shown that overactive mutated KRAS inhibits localiza-
tion of the RISC component Argonaute 2 (Ago2) to MVBs 
and decreases Ago2 secretion in exosomes [64]. Inhibition 
of mitogen-activated protein kinase kinases (MEKs) I and 
II was shown to reverse the effect of the activating KRAS 
mutation, leading to increased exosomal Ago2 secretion. 
mRNAs also seem to be selectively enriched in exosomes 
[65]. Exosomal mRNAs show enrichment in 3′UTR frag-
ments [66], which could play a role for mRNA sorting 
into the vesicles [67]. Exosomes have also been shown to 
contain ubiquitinated proteins [10, 68], and ubiquitination 
could be a mechanism to target proteins to exosomes [69, 
70].
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Lipids may also be important for sorting of specific 
proteins into exosomes. Interestingly, exosomes have been 
shown to be enriched in cholesterol, sphingomyelin and 
glycosphingolipids compared to their parent cells [71, 72]. 
This suggests that exosomal membranes may contain lipid 
rafts, membrane subdomains enriched in cholesterol and 
glycosphingolipids that play important roles in signaling 
and sorting [73, 74]. In fact, one of the first studies on the 
role of lipids in exosome release showed that lyn, flotillin-1 
and stomatin are released to the extracellular medium via 
their association with lipid domains (Triton X-100-insol-
uble fractions) in the exosomal membrane [75]. In addi-
tion, sphingosine 1-phosphate (SP1), a lipid formed by the 
phosphorylation of sphingosine by sphingosine kinase 1 
(Sphk1) and 2 (Sphk2), has been shown to regulate cargo 
(such as CD63, CD81 and flotillin) sorting into exosomes 
via inhibitory G protein (Gi)-coupled S1P receptors located 
on MVB membranes [76]. These receptors are continu-
ously activated through a constant supply of S1P catalysed 
by sphingosine kinase (SphK), though it is not clear how 
the kinase is recruited to MVBs. Importantly, impair-
ment of S1P signalling did not reduce the total number 
or size of exosomes, even if secreted exosomes contained 
lower amounts of CD63. This suggests that S1P signal-
ling is mainly involved in sorting of cargo molecules into 
exosomes, and not in ILV formation [76].

Transport of MVBs to the plasma membrane 
and exosome release

Multivesicular bodies can either be directed to lysosomes 
where their content is degraded or transported to the plasma 
membrane for exosome release. Little is known about the 
molecular mechanisms and the cellular statues that regulate 
this balance. Recently, ISGylation, a posttranslational ubiq-
uitin-like modification, was proposed to be one of the sig-
nals regulating the MVBs’ fate [77]. Induction of ISGyla-
tion was shown to impair exosome secretion, measured by 
quantification of several exosomal markers by WB, as well 
as by NTA. The authors suggested that ISGylation of MVB 
proteins promotes fusion of MVBs with lysosomes, thereby 
directing MVBs to the degradation pathway and away from 
the secretory pathway [77].

Transport of MVBs to the plasma membrane is 
dependent on their interaction with actin and the micro-
tubule cytoskeleton [34, 49, 78]. Knockdown or overex-
pression of the actin binding protein cortactin has been 
shown to decrease or increase exosome release, respec-
tively [79]. Moreover, live-cell imaging indicated that 
cortactin is involved in both trafficking and docking of 
MVBs to the plasma membrane [79]. Rab GTPases, the 
largest family of small GTPases [80], regulate many 

steps of membrane trafficking, including vesicle budding, 
transport of vesicles along actin and tubulin, as well as 
membrane fusion. Interestingly, several Rab GTPases 
have been shown to play a role in exosome secretion, 
although their precise mechanism of action in this pro-
cess is not known. The first Rab GTPase shown to be 
involved in exosome secretion was Rab11. Overexpres-
sion of a dominant-negative Rab11 mutant inhibited exo-
some release, measured by quantification of the exosomal 
levels of transferrin receptor, Lyn and HSC70, in human 
leukemic K562 cells [81]. In line with this, depletion of 
Rab11 in Drosophila S2 cells reduced the release of Evi-
bearing exosomes [82]. On the contrary, Rab11 was not 
found to affect exosome release from HeLa cells [83]. 
Hsu et  al. showed that knockdown of Rab35 decreased 
the release of exosome-associated proteolipid protein 
(PLP) from the oligodendroglial cell line Oli-neu, pos-
sibly due to reduced docking/tethering of MVBs at the 
plasma membrane [84]. Reduced exosome release after 
Rab35 knockdown was later confirmed by Fruhbeis et al. 
using the same model [85], whereas Rab35 depletion did 
not affect exosome release from Drosophila S2 cells [82].

In a shRNA screening targeting 59 Rab GTPases in 
HeLa cells, five of them were found to be involved in exo-
some secretion [83]. After shRNA transfection, secreted 
exosomes were trapped on anti-CD63-beads and detected 
by anti-CD81 and anti-HLA-DR (MHC II) antibodies 
using FC. Knockdown of Rab2b, Rab5a, Rab9a, Rab27a 
and Rab27b decreased exosome secretion in the screen-
ing assay. The effect of Rab27a and Rab27b was verified 
by measuring the total amount of exosomal protein, as well 
as the exosomal level of HLA-DR, HSC70 and TSG101. 
Ostrowski et  al. also showed by total internal reflection 
fluorescence (TIRF) microscopy that Rab27a and Rab27b 
depletion reduced docking of MVBs to the plasma mem-
brane [83]. The effect of Rab27a on exosome release has 
been reported in several studies using different cell lines 
[14, 34, 86, 87]. Nevertheless, some studies do not show an 
effect of Rab27 knockdown on exosome release [82, 88]. 
The last Rab protein that has been shown to be involved 
in exosome secretion is Rab7. Baietti et  al. showed that 
Rab7 regulates secretion of syntenin and syndecan-con-
taining exosomes from MCF-7 cells, whereas no effect 
was observed in HeLa cells [35, 83]. Moreover, Rab7 and 
Rab27b, but not Rab27a, have been shown to regulate 
secretion of exosomal miR-143 from HUVEC cells [89]. 
Contrary to previous studies, a recent report showed that 
knockdown of Rab27b increased particle release from PC-3 
cells [90]. However, in this study exosomes were not iso-
lated and the conditioned media was measured by NTA 
directly after 12,000×g centrifugation. The discrepant find-
ings might be due to cell-specific regulations, or due to 
methodological challenges, such as different protocols for 
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isolation of vesicles and different methods to quantify the 
amount of released exosomes (discussed below).

Small GTPases of other families such as the Rho/Rac/
cdc42 family might also play a role in exosome release. 
In particular, in a study of RhoGTPases in HIV-1 virion 
production, the RhoA effector citron kinase was shown to 
increase the release of exosomes [91].

Exosomes are released into the extracellular environ-
ment upon fusion of MVBs with the plasma membrane. 
During this process several energy barriers need to be over-
come. A number of protein–lipid and protein–protein inter-
actions have been shown to reduce these energy barriers 
and facilitate fusion, as well as to provide specificity. Pro-
teins involved in membrane fusion include soluble N-eth-
ylmaleimide-sensitive factor attachment protein receptors 
(SNAREs), tethering factors, Rabs, and other Ras GTPases 
[92]. The specific molecular machinery for fusion of MVBs 
with the plasma membrane is not well characterized.

SNARE proteins facilitate fusion of vesicles with their 
target membrane, such as the plasma membrane or the 
membrane of different organelles [93]. A SNARE com-
plex is built up by three or four SNARE proteins forming 
four coiled-coil helices. The members of this protein family 
are classified as either R- or Q-SNAREs. Generally, fusion 
involves one R-SNARE (usually v-SNARE) and three 
Q-SNAREs (usually t-SNAREs) [92]. Fader et al. showed 
that the R-SNARE vesicle-associated membrane protein 7 
(VAMP7) is necessary for exosome release in the human 
leukemic cell line K562 [94]. In this paper, overexpres-
sion of the N-terminal domain of VAMP7, which inhib-
its SNARE complex formation, reduced exosome release, 
measured as exosome-associated acetylcholinesterase. The 
authors also observed that the MVBs were enlarged and 
distributed to the cell periphery after overexpression of the 
N-terminal domain of VAMP7, thus suggesting that the 
fusion of MVBs with the plasma membrane was impaired 
[94].

Another R-SNARE protein, YKT6, has been shown to 
be required for exosome release in two independent stud-
ies. Gross et al. showed that depletion of YKT6 decreased 
the level of TSG101, WNT3A and VPS26/35 in exosomes 
secreted from human embryonic kidney HEK293 cells [33]. 
In line with this, Ruiz-Martinez et  al. showed a reduced 
level of exosome-associated TSG101 after knockdown 
of YKT6 in A549 human lung cancer cells [95]. In Dros-
ophila S2 cells, depletion of the Q-SNARE syntaxin 1A 
(Syx1A) decreased release of Evi-bearing exosomes [82]. 
Recently, pyruvate kinase type M2 (PKM2) was shown to 
phosphorylate SNAP-23, which in turn enables exosome 
release [96].

A study in Caenorhabditis elegans indicated that the 
Ras-related GTPase homolog (Ral-1) is involved in MVB 
formation and fusion with the plasma membrane [97]. 

Likewise, in 4T1 mouse mammary tumor cells, knockdown 
of the mammalian homologs Ras like proto-oncogene A 
(RalA) and RalB reduced the secretion of exosome-like 
vesicles. In that study exosome release was quantified by 
electron microscopy (EM) and by the exosomal level of 
ALIX, CD63, HSC70 and TSG101 [97]. Interestingly, 
the authors also showed that MVBs accumulate under the 
plasma membrane when the Q-SNARE syntaxin 5 was 
absent in C. elegans.

Furthermore, addition of an ether lipid precursor that 
increases the levels of cellular (and exosomal) ether lipids 
has been shown to increase the release of exosomes from 
PC-3 cells [98]. The mechanism of this effect is not clear, 
but ether lipids have previously been suggested to be 
involved in membrane fusion [99], and the increased exo-
some secretion could be due to facilitated fusion of MVBs 
with the plasma membrane. Moreover, addition of choles-
terol (in complex with methyl-beta cyclodextrin) in Oli-neu 
cells has been shown to increase the exosomal levels of 
several proteins such as flotillin-2, ALIX and CD63 [100]. 
In contrast, a reduction of cholesterol levels in PC-3 cells, 
both by addition of methyl-beta cyclodextrin and by meta-
bolic inhibition of its formation, increased the secretion of 
several exosomal proteins [101].

Importantly, it has been shown that exosome release can 
be regulated by calcium. Increased intracellular calcium 
level after treatment of human erythroleukemia K562 cells 
with monensin or the calcium ionophore A23187 has been 
shown to increase exosome secretion [102]. In line with 
this, the calcium ionophore ionomycin was shown to facili-
tate exosomal release of PLP from oligodendrocytes [103]. 
Some proteins, such as synaptotagmins, function as cal-
cium sensors and have been implicated in vesicular trans-
port [104]. Interestingly, a member of the synaptotagmin 
family has been reported to affect exosome release. Knock-
down of synaptotagmin-7 was shown to reduce exosome 
secretion, as measured by NTA [34], likely by affecting the 
fusion of the MVBs with the plasma membrane.

Interestingly, it has been shown that inactivation of 
the vacuolar ATPase (V-ATPase) in HeLa cells results in 
increased exosome secretion, and that the exosomes remain 
clustered and attached to the plasma membrane by tetherin 
[105]. This indicates that these exosomes may not reach 
long distances and may stay closely attached to the secret-
ing cell. Regulation of tetherin expression could be a cel-
lular mechanism to regulate whether exosomes should exert 
their effect locally or at longer distances.

Cellular homeostasis affects exosome release

It has been suggested that the destination of MVBs to either 
degradation or secretion depends on cellular homeostasis 
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and that exosomes play a role in protecting cells against 
intracellular stress [9, 106]. Several studies have shown that 
cellular stress increases exosome secretion [107–111]. Irra-
diation of cells has been shown to induce senescence and 
to increase exosome release [107, 108]. Increased exosome 
release has also been reported after cisplatin treatment 
[109], as well as after exposure to hypoxia [110]. Further-
more, induction of ER stress by tunicamycin increased the 
number of cellular MVBs and enhanced exosome secretion 
[111]. It is not clear why cells respond to stress by releas-
ing more exosomes, but this could be an alternative way of 
eliminating waste products. The secreted exosomes might 
be targeted to and degraded by phagocytes, but they might 
also have other destinations. Exosomes secreted as waste 
are likely to affect neighboring cells and possibly induce 
pathological conditions. Another possibility is that cells 
might communicate to neighboring cells about intracellular 
stress by increasing exosome release.

Similarly to the stress hypothesis, a link between 
autophagy and exosomes has been proposed [9]. Autophagy 
is a degradative pathway that supplies nutrients during star-
vation and eliminates damaged organelles, aggregated pro-
teins and invading pathogens [112]. This pathway can be 
induced by various stimuli to maintain cellular homeosta-
sis. Upon autophagy induction cytoplasmic cargo is trapped 
within double-membrane vesicles termed autophagosomes, 
which can fuse with MVBs to form amphisomes or directly 
with lysosomes [112]. The cargo is then degraded in the 
lysosomes and the components are transported back to the 
cytoplasm. Fader et al. showed that induction of autophagy 
by starvation reduced exosome release [113]. The authors 
proposed that this was caused by increased fusion of MVBs 
with autophagosomes, thereby directing MVBs to the 
degradative pathway. Moreover, inhibition of autophagy 
by ATG7 depletion has been shown to enhance exosomal 
secretion of GAPDH [114]. Recently, we showed that inhi-
bition of the phosphoinositide kinase PIKfyve, which gen-
erates phosphatidylinositol-3,5-bisphosphate, increased 
exosome release and reduced autophagic degradation, 
most likely due to a reduced fusion of lysosomes with both 
MVBs and autophagosomes [10]. Rather than an effect of 
autophagy per se on exosome release, this could be due to 
interference with transport or fusion of the organelles. In 
line with this, it has also been shown that lysosomal dys-
function induced by ammonium chloride or bafilomycin A1 
leads to increased secretion of alpha-synuclein in exosomes 
from SH-SY5Y cells [115]. In such cases where the trans-
port through the degradative pathway is obstructed or the 
lysosomal pathway is overloaded due to stress, exosome 
release might indeed be an alternative route to dispose 
waste.

Murrow et al. showed that basal autophagy is impaired 
in cells lacking ATG12-ATG3, a conjugate of two 

autophagy-related proteins, whereas starvation-induced 
autophagy is not affected [116]. The authors also showed 
that ATG12-ATG3 deficiency impaired exosome release, 
measured as total exosomal protein as well as by the levels 
of several exosomal markers, and suggested this was due 
to impaired late endosomal function. This could be another 
mechanism linking exosomes to autophagy.

In addition to its more thoroughly studied role in degra-
dation, the autophagic machinery is also involved in a less 
known process termed secretory autophagy [117]. Secre-
tory autophagy is considered as an unconventional secre-
tion process that releases numerous cytoplasmic substrates 
from the cell [117]. Since secretory autophagy is induced in 
cells with lysosomal dysfunction this might be, in a similar 
way as exosomes, an alternative way of eliminating waste 
products. Certain neurodegenerative diseases are associated 
with dysfunctional autophagy and deposition of aggrega-
tion-prone proteins, thus secretory autophagy might play a 
role in these diseases [118, 119].

Furthermore, not only MVBs, amphisomes and 
autophagosomes can release their content to the extracellu-
lar environment, but also lysosomes in a process called lys-
osomal exocytosis [120]. These secretion pathways indeed 
share some features and do somewhat overlap. When a 
cell is no longer able to degrade material in the lysosomes 
due to a lysosomal defect, lysosomal overload or transport 
interference, secretion of the content of lysosomes, MVBs 
or amphisomes could be a way to rescue the cell. Further-
more, when amphisomes fuse with the plasma membrane, 
the ILVs included in the amphisome will appear extracel-
lularly as exosomes. Also if a lysosome secretes its content 
before it is fully degraded, remaining ILVs can be released 
as exosomes. Though these pathways cannot be entirely 
separated, each pathway is probably regulated by distinct 
machineries.

Methodological aspects related to studies 
of exosome release

There is no consensus in the literature about the optimal 
methods and conditions to study exosome biogenesis and 
release. The methodology is continuously being developed 
as new technological advances appear and new knowl-
edge is generated. In this section, we describe the differ-
ent parameters that have to be considered and the different 
methods that are used to study exosome release. Impor-
tantly, different methodological approaches might explain 
reproducibility issues. It should be mentioned that this 
section is not meant to give an overview of the exosome 
methodology in general (for reviews on the subject see 
[121–126]), but to present methodological aspects related 
to exosome biogenesis and release studies.
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Cellular models

Studies of exosome biogenesis and release have mainly 
been performed using in vitro grown cell lines as a model. 
There are few published comparative studies [127], but dif-
ferent cell lines can be expected to release different levels 
of exosomes to the extracellular environment. It should also 
be mentioned that some cell lines may have cell-specific 
molecular machineries for exosome biogenesis and release. 
Therefore, in order to generalize the function of a specific 
molecule in exosome release, several cell lines and read-
outs of exosome release have to be tested.

Exosome collection

The amount of exosomes needed in each experiment 
depends on the sensitivity of the quantification method. 
Based on this and on the cell line that is going to be used, 
the number of cells per experiment and/or the collection 
time of exosomes can be adjusted. Kinetic studies of exo-
some release are not often seen in the literature. Authors 
often choose a specific collection time that varies from a 
few hours to several days. We have observed that there is an 
increasing release of exosomes during the first 24 h in PC-3 
cells [101]. The medium in which the exosomes are col-
lected is also an important factor. Many cell lines are grown 
in the presence of fetal calf serum, which naturally contains 
exosomes, and thus may affect the results. To avoid this 
problem, exosomes are either collected in medium without 
serum, if the cells tolerate this, or with medium depleted of 
exosomes [122]. It should be mentioned that other medium 
supplements, such as bovine pituitary extract, even though 
they might not contain exosomes, might contain other vesi-
cles or proteins that may be pelleted with exosomes during 
ultracentrifugation.

Exosome isolation

Exosomes have often been isolated by sequential centrifu-
gation in exosome release studies. This method includes 
2–3 centrifugations at low speeds to remove cells, cell 
debris and microvesicles, followed by ultracentrifugation at 
approximately 100,000×g for 1–2 h and a PBS wash [122]. 
It cannot be expected that this method gives a pure exosome 
population because the size of exosomes and microvesicles 
overlaps to some extent, but a fraction that is enriched in 
exosomes. Importantly, it has recently been shown that the 
100,000×g pellet could be divided into several categories 
both by floatation into iodixanol gradients and by immu-
noisolation using beads coated with antibodies targeting 
either CD9, CD63, or CD81 [28]. Based on these results it 
was suggested that vesicles in the 100,000×g pellet should 
be referred to as “small EVs” (sEVs) instead of exosomes 

[28]. Moreover, if present, lipoparticles from serum and 
lipid droplets would be co-isolated together with exosomes 
during ultracentrifugation [71]. Autophagosomes can con-
tain lipid droplets in their lumen that would be released 
from the cells and co-isolated with exosomes if secretory 
autophagy is induced [10]. As recently discussed in another 
review, the presence of large amounts of triacylglycerol or 
cholesteryl ester in exosome preparations is an indication 
of contamination with lipid droplets or lipoproteins [71]. 
The heterogeneity of the 100,000×g pellet and the pres-
ence of potential contaminations are likely to have caused 
some of the discrepancies reported in exosome release 
studies. Another drawback of ultracentrifugation is that the 
throughput is limited by the rotor capacity.

Although differential centrifugation is the most com-
mon method used for exosome isolation, other methods can 
be used to obtain exosome or exosome-enriched samples. 
Density gradient centrifugation was shown to give the pur-
est exosome population when compared to ultracentrifu-
gation and precipitation-based methods [121]. However, 
this method gives a relatively low yield and is time con-
suming. Moreover, Kowal et al. reported that density gra-
dient centrifugation of 100,000×g pellets was not able to 
clearly separate subpopulations of small EVs [28]. Immu-
noisolation of exosomes based on specific proteins at the 
exosomal membrane is also a method that would result in 
relatively pure EV subpopulations [28, 128], but it requires 
that the selected membrane protein is carefully chosen and 
that the immunoisolation protocol is optimized. Interest-
ingly, Tauro et al. reported that immunoaffinity capture was 
more efficient to isolate exosomes from a colon cancer cell 
line than ultracentrifugation and density gradient isolation 
[129]. Surface plasmon resonance (SPR) also allows ana-
lyzing specific exosome populations. SPR-based quanti-
fication of exosomes is based on the capture of exosomes 
on an immuno-functionalized surface and measurements 
of the resulting change in refractive index. This method-
ology has shown promising results in detecting exosomes 
containing specific exosomal markers such as CD63 as well 
as cancer specific proteins [130–132]. Another isolation 
technique is based on the precipitation of exosomes with 
volume-excluding polymers such as polyethylene glycol 
(PEG). This is a rapid method, but that probably results in 
the coisolation of exosomes with other structures of similar 
sizes. Finally, a method that is gaining popularity in the EV 
field is size exclusion chromatography (SEC). This method 
allows the separation of exosomes from proteins, but not 
from microvesicles, protein aggregates and lipoparticles.

Whether it is beneficial to isolate specific exosome sub-
populations rather than all small vesicles remains a ques-
tion for debate. At the present stage, there is little knowl-
edge about the function of the different EV subpopulations. 
The EV subpopulations, and their protein markers, might 
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also be highly dependent on the cell type, as well as the 
homeostasis and treatment of the cell. Thus, one should be 
careful to apply strict guidelines for categorizing EV sub-
populations at this point. The optimal isolation method will 
depend on the aim of the study, the downstream analysis 
and which impurities are acceptable in that context. Impor-
tantly, it seems clear that the choice of isolation method can 
affect the results obtained from studies on exosome biogen-
esis and release.

Exosome analysis

To investigate whether a specific treatment or molecule 
affects exosome release, the number of vesicles released 
has to be determined (Fig. 1). In many cases, this has been 
measured in an indirect manner for example by measur-
ing the enzymatic activity of a specific exosomal protein 
or the levels of typical exosomal proteins such as TSG101 
or ALIX, or specific proteins (PLP) (Table 1). These meth-
ods should be supplemented with additional methods and/
or additional molecules since alterations in the cellular lev-
els or sorting of the chosen protein by the treatment might 
affect the results. Moreover, Kowal et al. have shown that 
the 100,000×g pellet contains subpopulations of vesicles 
with different protein composition [28]. In addition, the 
authors found that some of the proteins commonly used 
as exosomal markers are also present on bigger vesicles 
recovered in the 2000×g and the 10,000×g pellets. Based 
on their results, the authors concluded that syntenin-1 and 
TSG101 can be considered specific markers of bona fide 
exosomes. It is likely that the analysis of only one or a 
few proteins, some of which have retrospectively not been 
shown to be optimal exosomal markers, in studies of exo-
some release might have affected the conclusions drawn. 
Mass spectrometry studies appear as a good alternative 
since they allow a more general characterization of the exo-
some proteome.

A more general, but still indirect method to analyze exo-
some release is to measure the total amount of protein (total 
amount of lipid or RNA can also be measured) in exosomes. 
However, this requires that the treatment does not change 
the vesicle size or content. In addition, the method requires 
that the exosome samples are not contaminated by pro-
tein aggregates. Methods that combine measurement of the 
total protein and lipid content of exosomes have also been 
tested [133]. FC after capture on beads has been used in 
several studies [83, 134], and direct FC has also become 
an option using specific methods or instruments with small 
particle detection capability [135]. Recently, NTA and tun-
able resistive pulse sensing (TRPS) have emerged as new 
methods to measure exosome concentration [136–138] and 
have been used in exosome release studies [10, 139]. These 
can be considered as direct methods since they measure the 

concentration of particles in solution. However, one should 
be aware that they do not exclusively measure exosomes, and 
that particles of similar sizes in the samples such as aggre-
gates or virus will be counted. Another technique that allows 
quantification of exosomes is SPR, as mentioned above. In 
conclusion, several methods are available to directly or indi-
rectly measure the number of exosomes released, and a com-
bination of several methods is recommended to confirm the 
implication of a molecule in the process. However, exosome 
release is the result of several steps, and quantifying the 
released exosomes does not indicate which step is affected. 
More insight can be obtained by studying MVB morphol-
ogy, number, location and ability to fuse with the plasma 
membrane. A few studies have addressed this issue by using 
immunofluorescence microscopy [83] or electron micros-
copy [10, 84, 98], but further methodological developments 
are required to study the different steps independently.

Conclusion

Several molecules have been implicated in exosome bio-
genesis and release, but for many of them, the exact mech-
anism of action is not clear yet. Exosome biogenesis and 
secretion seem to utilize several machineries, depending on 
either cell type or cellular homeostasis. In addition, differ-
ent MVB subtypes might exploit different pathways. Find-
ing consensus in the field is complicated by methodological 
challenges such as the use of different methods for exosome 
isolation and quantification. However, this is an interesting 
field that needs to be further explored. Moreover, consid-
ering the role of exosomes in physiological and pathologi-
cal conditions, strategies that interfere with the release of 
exosomes and impair exosome-mediated cell-to-cell com-
munication could potentially be exploited therapeutically in 
the future.
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